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Abstract: Imaging spectrometry from aerial or spaceborne platforms, also known as hyperspectral remote
sensing, provides dense sampled and fine structured spectral information for each image pixel, allowing
the user to identify and characterize Earth surface materials such as minerals in rocks and soils, vegetation
types and stress indicators, and water constituents. The recently launched DLR Earth Sensing Imaging
Spectrometer (DESIS) installed on the International Space Station (ISS) closes the long-term gap of sparsely
available spaceborne imaging spectrometry data and will be part of the upcoming fleet of such new
instruments in orbit. DESIS measures in the spectral range from 400 and 1000 nm with a spectral sampling
distance of 2.55 nm and a Full Width Half Maximum (FWHM) of about 3.5 nm. The ground sample
distance is 30 m with 1024 pixels across track. In this article, a detailed review is given on the applicability
of DESIS data based on the specifics of the instrument, the characteristics of the ISS orbit, and the methods
applied to generate products. The various DESIS data products available for users are described with
the focus on specific processing steps. The results of the data quality and product validation studies
show that top-of-atmosphere radiance, geometrically corrected, and bottom-of-atmosphere reflectance
products meet the mission requirements. The limitations of the DESIS data products are also subject to a
critical examination.

Keywords: hyperspectral remote sensing; imaging spectrometry; earth observation; DESIS; MUSES; ISS

1. Introduction

Airborne and spaceborne imaging spectrometers have advanced our understanding of the
dynamic processes of ecosystems by enabling quantification of geochemical, biochemical and
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biophysical characteristics of the Earth through collection of contiguous spectra of the Earth’s surface
over a defined wavelength range for each image pixel. The fine spectral resolution (typically in
the range of 2–20 nm) of imaging spectrometers has several advantages compared to multispectral
instruments that have typically 10–20 spectral bands with bandwidths of 50–200 nm and large gaps
between these broad bands. In principle, optical Earth observing instruments record the interaction of
solar irradiation with the Earth’s surface and atmosphere. Imaging spectrometers allow for the
quantitative measurement of the photon–matter interactions with very high spectral detail and
accuracy [1]. With this, we can: (i) identify Earth surface materials such as minerals [2], vegetation
invasive species [3] and urban surfaces [4]; (ii) quantify biochemical parameter such as the chlorophyll
content of vegetation stands [5,6], soil organic matter [7,8] and water quality [9]; (iii) identify the
background signal shadowing effects in urban areas [10], soil background for agricultural fields or
vice versa [11] with unmixing techniques; and (iv) directly measure the composition of the intervening
atmosphere to calculate precise surface reflectance [12] using radiative transfer approaches.

Operational spaceborne imaging spectrometer systems with sufficient spectral and spatial resolution,
high signal-to-noise ratio (SNR) and good revisit times are still a challenge. This is due to the required
trade-off between spectral bandwidth and the required energy (radiation) to illuminate detector elements
(spatial resolution) to keep a sufficient signal to noise ratio (data quality). There are several categories of
spaceborne imaging spectrometer missions in operation and/or in development. The first are operating
missions such as CHRIS on PROBA-1 [13], Chinese Tiangong-1 [14,15], the Indian Hyperspectral Imaging
Satellite (HySIS) (weblink available) and the Italian PRISMA mission [16], as well as future missions such
as the German EnMAP [17], the Israeli SHALOM mission (REF) and ESA’s FLEX mission [18], which are
technology demonstrators as well as science missions to prepare for more advanced spaceborne imaging
spectrometers and suitable analysis techniques. Another category includes large operational mapping
missions such as the Copernicus Hyperspectral Imaging Mission for the Environment [19] and NASA’s
Surface Biology and Geology mission (SBG) [20], which have the objective of providing global coverage
at high temporal resolution to boost operational product generation and the commercial use of data to
support economic growth. A third category comprises the various initiatives of cubesat constellations with
imaging spectrometers on board, including the operating HyperSCOUT mission [21] and the planned
CSIMBA mission [22]. Such missions investigate their capability to reduce revisit time and save high
mission development costs, but also to test onboard data processing for the development of near-real-time
products from spaceborne imaging spectrometers.

In the near future, the International Space Station (ISS) will host several imaging spectrometers
such as the upcoming NASA Earth Surface Mineral Dust Source Investigation mission and the Japanese
HISUI imager [23]. Additionally, NASA’s Climate Absolute Radiance and Refractivity Observatory
(CLARREO) Pathfinder mission [24] is in development to enable high accuracy SI-Traceable
calibration for various Earth observing missions. DLR’s Earth Sensing Imaging Spectrometer (DESIS),
jointly developed by the German Aerospace Center (DLR) and Teledyne Brown Engineering, is the
first operating imaging spectrometer onboard the ISS [25,26]. DESIS is integrated into the Multi-User
System for Earth Sensing (MUSES) platform, which provides accommodations for two large and two
small hosted payloads and provides position and attitude measurements, master time, data downlink,
and other core services common for each payload [27]. DESIS records data with an exceptionally
high spectral resolution of 2.55 nm and a spatial resolution on the ground of about 30 m pixel size.
In addition, DESIS is opening up further special fields of application. The off-nadir capability of DESIS
with ±15◦ along the track during one image strip acquisition enables investigations of multiangular
characteristics of objects on Earth, providing additional target-specific signatures. Finally, DESIS can
be seen as a precursor instrument for EnMAP, as it has the same detectors in the VNIR range [17,26].
The experience gained, especially in the laboratory calibration and commissioning phase of DESIS,
will be incorporated into the EnMAP program.

This article does not describe the design or specifications of the DESIS instrument and the MUSES
platform, but rather the data products available to users and their quality as determined during the
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commissioning phase. For the DESIS instrument design, please refer to [26] and for the MUSES platform
please refer to [27]. The article is organized as follows. In Section 2, a review of possible hyperspectral
applications with focus on the DESIS mission and the ISS orbit characteristics is given. An overview of
available products and their specific processing is described in Section 3. In Section 4, the validation
results of the commissioning phase of DESIS are presented with the purpose of enabling users to assess
the quality of the data. The limitations of the data are given in Section 5. Finally, Section 6 describes a
data fusion experiment of DESIS data with Sentinel-2 data and demonstrates the potential of multi-modal
applications, especially if other Earth sensing instruments are placed in the MUSES platform.

2. Application Fields of DESIS

Imaging spectroscopy data opens up new opportunities for Earth surface identification and
quantification. The spectral sampling of DESIS of 2.55 nm across the VNIR spectral wavelength range
combined with 30 m spatial resolution allows new developments for a wide range of applications.
The following paragraphs emphasize potential applications where especially DESIS can play a vital role
to identify surface materials and to quantify their abundance in a given pixel. However, these applications
are not exclusive and other applications that are currently barely explored such as the use of DESIS data
for urban areas [28] or for detecting rare Earth elements are not explicitly mentioned here.

2.1. Coastal and Inland Waters

Coastal and inland bodies of water are one of the most important and sensitive ecosystems
worldwide. These zones host the most significant and diverse bacterial, algal, plant, and animal
populations of the planet [29] because they supply food and freshwater; serve a key role in cycling of
carbon, minerals and nutrients; and have far-reaching cultural and recreational impacts [30]. Coastal
and inland waters are some of the most biologically diverse and at the same time endangered places
on Earth [31]. Over 70 % of the human population lives near a coast, estuary, wetland, or coral
reef. Due to the increasing eutrophication and pollution of inland and coastal water ecosystems,
monitoring these areas with high spatial and spectral Earth Observation data is essential [32]. Several
studies analyzed the satellite sensor requirements for a monitoring system resulting in 5–10 nm
spectral resolution and a spatial resolution 17 m to 60 m pixel size, covering wavelength ranges up
to 1000 nm [29,33–35]. Given these requirements, DESIS can play an essential role in developing
a next-generation coastal and inland water monitoring system [36–39], allowing the retrieval of
water reflectance, physical parameters such as turbidity and water clarity [40], suspended and
dissolved water quality components (e.g., Chl-a concentration as a proxy of phytoplankton biomass),
colored dissolved organic matter (CDOM) and total suspended matter (TSM) [9,41]. Compared to
traditional EO systems based on MODIS, MERIS, Sentinel and Landsat [42,43], imaging spectroscopy
has clear advantages in discriminating phytoplankton types [43], characterizing submerged habitat
compositions [44], assessing water quality [32], observing environmental threats such as coral bleaching
and estimating bathymetry [45].

2.2. Cryosphere

A relatively new field of application is using imaging spectroscopy data to interpret snow
properties such as grain size [46], liquid water content, snow algae and light-absorbing impurities in
snow and ice. Knowledge of these characteristics is important because the authors of [47,48] stated
that the black carbon on snow surfaces has a much higher impact on snowmelt than the increase in air
temperature. A better understanding of the influence of these properties on the dynamics of snow
albedo can increase our understanding of water and energy fluxes in snow-covered areas and thus
contributes to hydrological and climate models [49]. Although snow reflects mainly in the wavelength
range 400–1400 nm, the major contribution can be found less than 1000 nm [50]. Thus, DESIS can
contribute to the general understanding of the radiative forcing from dust (light-absorbing impurities
in snow and ice, LAISI) and the dependency and complex feedback effects of the snow grain size.
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In general, LAISI leads to an increased absorption of solar radiation (radiative forcing) in the visible to
near-infrared, a driver for melting snow in the mountains [51]. One of the feedback effects is grain
coarsening, when water percolates vertically, that further decreases snow albedo. At the same time,
smaller grains remaining on the surface mitigate this effect [52]. Recently, snow spectroscopy has been
complemented by LIDAR data to support the derivation of the snow water equivalent, an important
parameter to estimate freshwater quantities [53]. It should be therefore mentioned that ISS also carries
a LIDAR instrument, Global Ecosystem Dynamics Investigation (GEDI) [54], that can be used to
complement DESIS for characterizing the cryosphere.

2.3. Vegetation

An important field of application is the characterization of vegetation that comprises various
topics such as species discrimination and invasive species detection; quantification of the structural,
physiological, biochemical, or phenological traits of vegetation; and productivity and stress monitoring.
Characterization of plant traits [55,56] gives insight into underlying ecophysiological processes of
different vegetated environments [57] such as forests [58], agricultural areas [59] and natural vegetation
stands [60]. Furthermore, vegetation traits are assimilated into complex decision support systems such
as hydro-agroecological models [61], ecosystem process models to assess forest productivity [62,63]
and forest biomass [64] or to assess biodiversity of natural areas [65]. The estimation of plant traits is
based on diagnostic spectral features across the complete reflective range of 400–2500 nm. The DESIS
wavelength range allows the direct quantification of vegetation pigments (e.g., chlorophyll, carotenoids,
and anthocyanin) and the estimation of biophysical parameters (e.g., leaf area index and biomass).
The quantification of nutrients, leaf and canopy water and biochemical constituents such as lignin and
cellulose, which are important indicators of ecophysiological processes, is hampered by the missing
SWIR wavelength range. However, in Huemmrich et al. [66] the potential of the observational ISS orbit
characteristics for studying ecosystem carbon fluxes that can vary widely due to environmental conditions
(e.g., irradiation and water supply) is described. Since the ISS orbit provides observations collected at
different times of the day within a period of a few days, it can be used to study the seasonal and diurnal
dynamics of ecosystem productivity, which would not be possible with Sentinel-2 and the Landsat fleet.
It should be mentioned that the use of DESIS for vegetation monitoring would still be experimental,
since ISS orbit characteristics also lead to longer periods in the vegetation period without any observation,
which is different from Sentinel-2, which offers acquisitions every five days with comparable observation
characteristics (e.g., quasi nadir observations and fixed equator crossing time), and thus contributes to
the operational exploitation of these datasets. Nevertheless, DESIS as an imaging spectrometer holds
the potential for an improved parameter retrieval for physical-based and empirical models [67,68] with
reduced uncertainties in space and time [69] and it can boast novel approaches by interpreting spectrally
detailed information that cannot be resolved by multispectral sensors [70].

2.4. Soil Sciences

Soils provide a large variety of ecosystem services, such as regulation of water and nutrient
availability to support human food security and biodiversity.Soils are the largest terrestrial carbon
pool on Earth [71]. Several soil regulations and policies, such as the EU Soil Thematic Strategy and Soil
Framework Directory, express the demand to protect soils from overexploitation and degradation [72].
Imaging spectroscopy is a commonly used and accepted data source for soil spectral modeling and the
quantification of soil constituents [73–75], which has resulted in mature data analysis packages such as
the EnMAP Soil Mapper ENSOMAP [76] and the data mining engine PARACUDA [77]. These and
other methodologies can support applications including the monitoring of soil status, soil fertility and
soil threats [78] from space. The VNIR wavelength range is sensitive to iron oxides that are among the
determinants of soil fertility and soil quality [79], as well as soil degradation [11,80]. Another important
parameter to assess soil quality and fertility is soil organic carbon (SOC), which can be mapped and
quantified by using the shape of the reflectance spectrum in the VNIR wavelength range [11,81–83].
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However, it should be noted that soils are very complex systems and the correlation of a spectral feature
to one soil property is not as straightforward as, for instance, SOC spectral features, and can be hidden
or weakened by iron oxides [84,85]. Additionally, soil water content [85,86] and soil roughness [87,88]
can affect the spectral reflectance of soils. The latter comprises the non-Lambertian behavior of soil
surfaces due to irregularities and the effects from shadowed areas. The multiangular capabilities and
the complex observation and illumination conditions of DESIS can support the analysis, and, ultimately,
modeling of soil roughness effects from space.

2.5. Synergies

With the availability of multiple spaceborne imaging spectrometers in the coming years, it will
be of great benefit to cross-calibrate these missions for multiple reasons. First, the end-user of
hyperspectral datasets can achieve a higher coverage on ground in the spatial and temporal domains,
especially since none of these missions is a global mapping mission. Next, there is the possibility to
extend the spectral range of DESIS into the SWIR by combining multiple sensors, or the possibility to
increase the spectral resolution within the VNIR spectral range thanks to the fine spectral resolution
of DESIS. For all these synergistic activities, the shifting ISS orbit is a big benefit because matching
observations with other EO satellite systems on other orbits are possible.

In this context, it is worth pointing out that, with the upcoming launch of HISUI, two additional
imaging spectrometers will be mounted on the ISS, so that simultaneous data acquisitions from the
same platforms will become possible, facilitating cross-validation and cross-calibration activities [89].
In addition, the spectrometers of the Climate Absolute Radiance and Refractivity Observatory
(CLARREO) Pathfinder mission, which will be installed on the ISS around 2023 [24], will allow
for new possibilities of highly accurate cross-calibration.

3. DESIS Products

The DESIS instrument can continuously collect data up to a maximum length of 3000 km on
the ground. Such Earth data-takes are embedded with measurements of the dark signal before and
after the acquisition. After a data screening process, which identifies and marks faulty or suspicious
measurements, the data-take is divided into 1024 × 1024 pixel tiles, corresponding to 30 × 30 km2

on the ground. Together with derived metadata and orbit/attitude products, the tiles are placed in
a long-term archive. Data of different processing levels can be requested via web portals (see [90]).
Table 1 summarizes the products a user or customer can order.

Table 1. DESIS products and user selectable processing parameters.

Product Type Description Order Parameters

L1B
Radiometric and sensor specific corrected data

Spectral BinningTop of Atmosphere (TOA) radiance (mW·cm−2·sr−1·µm−1)
All metadata attached for further processing

L1C
L1B data orthorectified and resampled to a specified grid

Map Projection Resamplingusing global SRTM 1 arcsec DEM for terrain correction
using global Landsat ETM+ references for sensor model refinement

L2A
L1C data atmospherically corrected (reflectance)

Terrain Correction Ozone Columnusing global SRTM 1 arcsec DEM for topographic correction
generating several masks (water, land, cloud, shadow,...)

The following sections give an overview of the DESIS products, as well as the specific algorithms
applied. A detailed algorithm description and the product specifications can be found at the DLR
DESIS Official Website [90]. This website also describes how users from the scientific community can
obtain DESIS data and view the License Agreement regarding the Use of the DESIS Data for Scientific Use.
For commercial applications, please visit [91]. It should be noted that the use of DESIS data with spectral
sampling better than 10 nm requires a special approval (see also “Spectral Binning” in Section 3.1).
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3.1. Top-of-Atmosphere Radiance Product (L1B)

The L1B processing algorithm is responsible for delivering at sensor Top-of-Atmosphere (TOA)
radiance from the Digital Numbers (DN) obtained after read out of the focal plan array signal in the
DESIS sensor. The DN to TOA radiance conversion can be described mathematically in a compact form:

L = G · (DNlin − DNdark
) (1)

where L is the TOA radiance at the sensor geometry, G is the radiometric correction factor, DNlin is

the DESIS recorded digital value corrected for non-linearity, and DNdark is the Dark Current (DC)
correction computed from the DN values recorded with the shutter lid in closed position, which model
the electronic noise of the instrument.

In addition to the radiometric conversion, the TOA radiance product is further processed in order
to identify and reduce the influence of different effects, the most important being:

1. Abnormal pixels. For the detection of the abnormal pixels, along with the dead pixel map table,
a scene-wise quality analysis is performed right after the radiometric conversion. The analysis
results are part of the final TOA radiance product in the form of a quality quicklook, which
describes the status of each pixel. Table 2 provides a list of the abnormal pixel types. Once the
abnormal pixels are flagged, a hybrid interpolation method is used to minimize their impact in
the final processing steps of the L1B processor. This hybrid interpolation selects the optimum
value between spectral and spatial cubic spline interpolation. The selection criterion is based on
the spectral gradient difference between the interpolated pixels and spatial neighbors.

Table 2. Description of the possible abnormal pixel types.

Defect Description

Unreliable Calibration Focal plane element whose characterization is flagged as unreliable during
on-board calibration.

Manufacturing Defects Focal Plane element whose characterization on-ground was not nominal.

No Data
Pixel containing no information. This type of abnormal pixel only appears on
initial and final tiles of a data-take due to the lack of data when L1A processor
produces the tile overlap.

Low Radiance Pixel flagged by the quality monitoring due to an abnormal low radiance value.

High Radiance Pixel flagged by the quality monitoring due to abnormal high radiance.

Suspicious Pixel Pixel flagged by the on-board calibration processor as not nominal but its
response is yet under investigation.

Dead Pixel which produces no response.

2. Rolling Shutter. The DESIS sensor has a CMOS detector that uses a rolling shutter mode,
which enables a higher frame rate and better SNR than a global shutter. The drawback of the
rolling shutter is that each scan line (i.e., spectral channel) is collected at a slightly different time.
Thus, each channel in a frame measures reflections from a different area on the ground due to
the time delay between the beginnings of exposure for each of the spectral channels. The L1B
processor accounts for the shift between the spectral channels within a frame and corrects it using
bi-cubic spline interpolation on the along-track direction.

3. Smile and Clocking. The spectral smile effect results in a variation of the channel central
wavelength in the across-track direction. Taking the measured central wavelength on the
sensor’s center as the nominal central wavelength, the spectral smile produces a shift of the
measured central wavelength with maximum values at the sensor edges. The TOA radiance
product provides a smile corrected image by performing a bi-cubic interpolation over the spectral
dimension on every pixel across-track. The difference between the nominal central wavelengths
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and the characterized wavelengths is shown on Figure 1. One of the main contributors to
the mismatch is the clocking effect produced by a small misalignment between the grating
plate and the focal plane. On the lower-half bands, this effect is contained within a 1 nm
difference, excluding the values in the manufacturing defect region. For the upper-half bands,
apart from the clocking, the optical etaloning effect increases the central wavelength mismatch.
The etaloning effect appears on back-illuminated CCD sensor due to the transparency of silicon
at NIR wavelengths. This property allows coherent light to reflect between the front and back
surfaces producing interference patterns which disturb the measurements [92,93]. The influence
of the etaloning is most noticeable on the highest bands and pixel values across-track.
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Figure 1. Quantification of the spectral smile on the DESIS focal plane as the difference of each detector
element to the nominal band center wavelength. Lower bands are mostly dominated by a clocking
effect between the grating plate and the focal plane. The NIR bands are also influenced by an etaloning
effect, produced by reflections between sensor layers, leading to the appearance of interference patterns.

4. Striping. Small pixel-to-pixel variations in the radiometric calibration factors of a push-broom
sensor result in visible along-track stripes in the acquired images. These variations can be due
to after-launch effects or sensor changes over time. A striping correction is introduced in the
DESIS processing chain as a multiplicative correction on the smile-corrected radiometric values.
Typically, the striping correction values observed in DESIS are below 1%, making it difficult to
obtain the values from a simple update of the radiometric calibration tables. To address this effect,
an iterative method, employing cubic splines to fit the across-track data using dozens of spatially
homogeneous scenes and to find the parameters that minimize the stripes, has been implemented.
An example of the striping effect on an image and its correction is shown in Figure 2.

Figure 2. Correction of striping in DESIS Images: (left) original image band 16, with visible
stripes (image stretched to emphasize the stripes); (middle) the same image after striping correction
(same stretching); and (right) the relative variation of radiance across-track, averaged along-track over
the colored area above the island. Colors in the right plot indicate the original image data (black),
striping-corrected data (green) and data corrected by striping, flat-fielding and spectral-adjustment
using the current DESIS calibration (red).
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Additionally, as a final processing step, the L1B processor is capable of performing binning
operations along the spectral dimension, based on a user-configurable parameter.

5. Spectral Binning. DESIS processing chain supports four different spectral binning configurations.
Binning ×1, or no-binning, is the nominal instrument data acquisition mode, offering 235 bands with
a nominal spectral sampling of 2.55 nm and Full Width Half Maximum (FWHM) of 3.5 nm. Binning
modes ×2, ×3, and ×4 provide spectral resolutions of 5.1 nm, 7.65 nm, and 10.2 nm, respectively.
The strategy for the spectral binning follows the hardware read-out sequence. Thus, during processing,
the bands are binned starting from the center of the focal plane towards the the edges.

3.2. Georeferenced and Resampled Product (L1C)

Orthorectification is the process of generating map products by removing geometric distortions
caused by the sensor internal geometry, the satellite motion during line-by-line data acquisition,
and the terrain-related influences. The L1C processor generates orthoimages employing the rigorous
technique of direct georeferencing [94,95]. The MUSES platform is equipped with a star tracker
(sampling rate 10 Hz) and a miniature inertial measurement unit (sampling rate 50 Hz), providing
a 10 Hz attitude measurement after filtering. The ISS GPS data provide position vectors and time
tags at a sampling rate of 1 Hz, serving as a master time for the attitude system and the DESIS
instrument with an accuracy of 0.25 ms (which is in terms of satellite movement about 1.8 m). The
internal sensor geometry was characterized in the laboratory, where the main finding was that the
consideration of an average keystone (i.e., averaged over the entire wavelength range) is sufficient
for geometric processing. The maximum spectral deviations are less than 0.14 pixels. The user can
choose the re-sampling method (nearest-neighbor, bilinear, and cubic convolution) and the map
projection (UTM or geographic). To meet the accuracy requirement of better than 1 pixel in geolocation,
existing global reference data with high geometric accuracy are used. The improvement consists of
an on-the-fly image matching with the reference data to extract Ground Control Points (GCP) and
adjust sensor model parameters. Currently, Landsat 7 ETM+ panchromatic global references with
an 2D Root Mean Square Error (RMSE) of about 25 m [96] are used. Note that the RMSE values of
the reference are strongly dependent on the region; for example, in North America, the RMSE is
about 16 m, while, in Australia, about 30 m. The improvement of the geometric accuracy by Level 1C
processing comprises the following steps:

1. Generate a panchromatic image (DESIS-PAN) using DESIS VNIR bands closest to the wavelengths
of the reference image (RI), employing the global Landsat 7 ETM+ reference database.

2. Coarsely register the panchromatic DESIS-PAN by affine transformation based on current
knowledge of the geometric mapping function.

3. Apply a Wallis filter to the DESIS-PAN and the RI to locally enhance the image contrast for a
better image matching.

4. Perform a cascade of image matching methods to extract homologous points (see Figure 3).

BRISK: Binary Robust Invariant Scalable Keypoints [97]
LLSQ: Local Least Squares hierarchical intensity-based matching [98]
SIFT: Scale-Invariant Feature Transform [99] (only used in case of a valid license)

5. After a highly selective outlier detection and removal, three-dimensional points are generated
using the global SRTM 1 arcsec Digital Elevation Model (DEM) and split into Ground Control
Points (GCP) for sensor model refinement and Control Points (CP) for geometric accuracy
assessment (see [94]).

6. Within an iterative least squares estimation, the DESIS mounting angles are refined and applied
for direct georeferencing. The least squares estimation includes a final outlier removal, where
GCPs with the highest residual and greater than a threshold (here 2 pixels) are successively
removed from the GCP set.
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Figure 3. (First row) Homologous points (marked yellow) found by image matching. Left image (a):
Reference (RI); Right image (b): coarsely orthorectified image by affine transformation (DESIS-PAN).
(Second Row) Thinned out homologous points (marked red) between RI (c) and DESIS-PAN (d) based
on best quality figure within a grid of 25 × 25 cells over the image. These points are used as GCPs to
adjust the sensor model, whereas the remaining homologous points are used for quality assessment.
Data: Railroad Valley, USA; 13 December 2018 18:23:11 UTC; 38.4467◦N 115.7512◦W; Sun Zenith 64.14◦,
Sun Azimuth 160.58◦; Incident Angle: 0.8◦.

In the case image matching is not possible due to low textured image pairs (e.g., rain forest,
deserts, and cloud and haze cover) or drastic changes in the land cover between the acquisition
times of the reference image and the DESIS scene (e.g., agriculture fields and snow cover), geometric
processing will rely only on the on-board position and attitude measurements, the laboratory geometric
calibration, and the estimated boresight angles (instrument mounting angles with respect to the star
tracker coordinate frame). This not only has an effect on the geolocation accuracy, but also on the
atmospheric correction procedure, since taking into account the topography with a digital surface
model (DSM) requires a co-registration accuracy of better than 1 pixel ( 30 m). Therefore, this function is
automatically switched off for insufficiently aligned datasets, as radiometric artifacts would otherwise
occur in the final product, especially in rough terrain.

3.3. Atmospheric Compensated Product (L2A)

The atmospheric compensation is performed by the L2A processor and corrects the data from
atmospheric molecular absorption, scattering and aerosol effects. The software used is a tailored
version of DLR’s PACO (Python Atmospheric COrrection, see [100]), which is based on ATCOR [101]
and was independently validated for multispectral sensors [102].

The atmospheric correction (AC) can be performed considering the rugged terrain or
approximating the surface to a flat-terrain of scene mean height. Both options are available to the user
through the “TerrainCorrection” option. The atmospheric compensated products consist of:
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• Bottom-of-atmosphere (BOA) surface reflectance in units ranging from 0 to 1.
• Quality masks containing classification, aerosol optical thickness (AOT) and water vapor (WV).

The 10 layers (see Table 3) are ordered as follows, with the first eight indicating which pixels are
classified according to the different criteria:

Table 3. Quality mask layers of the L2A product.

Layer Description

1 Shadows: mask flagging those pixels identified as cloud and topographic shadows.
The latest is not included if the user process the image without TerrainCorrection option.

2 Clear land: pixels flagged in this mask have not been identified neither as water, nor as cloud pixels.
3 Snow
4 Haze over land
5 Haze over water
6 Cloud over land: this actually contains all cloud pixels
7 Cloud over water: this layer is only filled when an external water mask is provided
8 Clear water: water detected pixels not flagged as haze
9 Aerosol Optical Thickness (at 550 nm)
10 Water Vapor (in cm)

Figure 4 shows an example of the masks for a DESIS scene taken over San Francisco Bay area.
This set of masks is very basic and can be used to extract more complete masks. The bit in the different
layers can be used with simple logic algorithms to combine the information. For example, the total
amount of water pixels in the scene will require the “or” logic combination of Layers 5, 7 and 8.

Figure 4. DESIS scene of San Francisco bay (10 October 2018): (Left) RGB map of the scene (R: 640 nm,
G: 550 nm, B: 461 nm); and (Right) color composite of the masks relevant for this scene: land (2) in
brown, water (8) in blue, shadows (1) in black and clouds (6 and 7) in yellow. The scene background is
represented in white in both pictures.

The last two layers: AOT and WV, are shown in Figure 5.
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Figure 5. DESIS scene of San Francisco bay (10 October 2018): (Left) aerosol optical thickness map
(Mask Layer 9); and (Right) water vapor map (Mask Layer 10). The maximum value in the plots
corresponds to an AOT value of 0.26 and WV = 3.7 cm.

If the rugged terrain AC [101] option is selected, the scene’s corresponding Digital Elevation
Model is calculated from the reference database (SRTM, 1 arcsec) (see Section 3.2).

The atmospheric correction performs the following steps and corresponding algorithms:

• High spectral resolution (0.4 µm) radiative transfer (RT) functions LUTs are simulated using
MODTRAN (version 5.4.0) [103] for both mid-latitude summer and winter seasons.

• The simulated radiative transfer functions are transformed to sensor specific radiative transfer
LUTs by convolving them with the sensor response function per band. The same response
functions are used to calculate the solar irradiance for DESIS sensors using the Fontenla [104]
solar model. The sensor response functions, RT LUTs and solar irradiance values are different for
the different binning modes (Section 4.3.2).

• The scene’s corresponding season is automatically determined from the land surface temperature
(LST) corresponding to the scene, with a season temperature threshold of 8 ◦C (below which winter
is assumed). The LST is retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer)
products, by querying the MODIS database MOD11C3 (version 6) [105], which contains the
worldwide monthly averaged LST in a 0.05 degree grid.

• Masking: According to a set of pre-established thresholds, the pixels are classified into clouds,
shadows, dark-dense vegetation (DDV), water, haze, etc.

• Aerosol Optical Thickness over land is retrieved per pixel using red and NIR surface reflectance
of dark dense vegetation pixels identified within the scene [106].

• A water vapor map is calculated for each pixel with the Atmospheric Pre-corrected Differential
Absorption (APDA) algorithm [107] using the water absorption region around 820 nm,
interpolating several bands.

• Rugged-terrain [101] or flat-terrain Bottom-Of-Atmosphere reflectance: If less than 1% of the
scene contains pixels with slopes > 6◦, the flat-terrain scenario is assumed to retrieve the surface
reflectance in order to avoid potential DEM artifacts.

4. Product Quality and Validation

During the commissioning phase, the quality of the data was evaluated and the products validated.
Adjustments were made in an iterative process to ensure reproducible physical measurements.
In particular, the radiometric and spectral characterization of the instrument was significantly
improved by vicarious calibration using ground measurements at well known test sites and through
cross-calibration with Landsat-8 and Sentinel-2 data. The following gives an overview of the data
validation studies.

4.1. Temperature Monitoring and Dark Signal Stability

To ensure DESIS sensor stability, two main parameters are monitored: (i) the temperature of the
sensor; and (ii) the dark signal or electronic noise.
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The sensor temperature is thermo-stabilized to 15 ◦C. The first representation in Figure 6 shows
the historic temperature values since the mission started. Deviations from the stabilized temperature
due to exceptional circumstances do not show any impact on the Dark Current (DC) measurements.
DC measurements are performed before and after each earth or calibration data-take. This strategy
ensures a good characterization of the sensor’s electronic noise, which is subtracted from the data-take
during the systematic corrections (see Section 3.1). The last two plots in Figure 6 show the averaged
DC reference values over the focal plane for the 2 different available gain factors, low gain (×2) and
high gain (×10).
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Figure 6. DESIS sensor historical monitoring results: (Top) historical temperatures of the focal plane;
and (middle,bottom) historical DC values averaged for the whole focal plane and for a gain factor ×2
and ×10, respectively.

Even though the aforementioned strategy is robust against dark signal variations up to a certain
point, a stable dark signal behavior is desired. The results are fairly stable during the mission lifetime.
Using the low gain (×2), the mean DC for the whole focal plane is 509.68 DN, with a standard deviation
among pixels of 29.01 DN. In the high gain (×10) case, the mean value is 512.32 DN, with a standard
deviation of 30.8 DN. The averaged standard deviation of the DC measurements is under 1 DN for
both gains. On June 7, a spike on the DC measurements was recorded that was produced by a single
non-nominal sensor behavior, which was solved returning the instrument behavior to normal.

Performing a pixel level analysis, Figure 7 shows the historical averaged values per pixel of the
whole focal plane. The two different data readout electronics divide the sensor in two, starting the
data acquisition from the center bands and continuing to the spectral edges. The visible pattern is due
to the readout configuration of the sensor. The two vertical halves of the sensor are read separately
and all vertical pixels within each half of the sensor share the same readout electronics.
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Figure 7. Historical averaged dark current values.

4.2. Radiometric Calibration and Properties

Most spaceborne optical instruments take advantage of on-board calibration assemblies (OBCA)
such as solar diffusers, integrating spheres or focal plane LEDs (e.g., [17]). In addition, vicarious
calibration approaches exist (e.g., [108]) that are used in conjunction with the OBCA measurements,
or as the sole calibration reference (e.g., [109]). No solar diffusers or integrating spheres are available
for DESIS, so the radiometric calibration is based on the pre-launch characterization of the instrument
combined with the use of LED OBCA unit and vicarious calibration. The OBCA unit, described
in [26], is mainly employed for monitoring the stability of the radiometric and spectral instrument
response. In addition, it can be used to update the calibration parameters, but the non-uniform
illumination of the focal plane introduces difficulties that have been avoided through the use of
vicarious calibration. The vicarious calibration of DESIS uses suitable spectrally homogeneous
scenes (including CEOS PICS and RadCalNet sites, see [108,110]), as well as cross-calibration using
near-coincident Landsat-8 and Sentinel-2 scenes. Based on these datasets, an update of the existing
radiometric coefficients (i.e., the relative and absolute radiometric calibration) and minor updates of
the spectral characterization of the sensor were performed.

This update of the calibration was performed during the Commissioning Phase and currently
represents the baseline calibration of the DESIS instrument. In the following sections, the two
approaches used for the validation of the DESIS calibrated data are briefly described and the relevant
findings are presented in Sections 4.2.1 and 4.2.2, while Section 4.2.3 presents an evaluation of the
DESIS Signal-to-Noise Ratio.

4.2.1. Top-of-Atmosphere Validation against RadCalNet

Thus far, no publicly available radiometric reference at TOA-level exists. The Committee on Earth
Observation Satellites (CEOS) set up an infrastructure which aims at providing SI-traceable reference
measurements for post-launch radiometric calibration and validation. The RadCalNet [110] currently
consists of four automated ground instrumentation sites, providing BOA reflectance and upscaled
TOA reflectance estimates at 10 nm spectral resolution between 380 nm and 2500 nm. The sites are
mostly non-vegetated and in semi-arid to arid regions, which are also spectrally smooth over a large
spatial region. It is worth noting that, even though data should be provided for each day at 30 minutes
intervals, a strict quality control process is used, so that only high-quality data are made available,
which reduces the effective number of available datasets.

The following sites and dates used for the validation of the DESIS radiometric data properties,
covering a time frame of six months, is shown (see Table 4).
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Table 4. Example of DESIS scenes of RadCalNet sites used for TOA-L validation within this study. SZA,
solar zenith angle; VZA, sensor view zenith angle; RVUS, Railroad Valley, USA; GONA, Gobabeb, Namibia.

DESIS Scene Date SZA VZA L2A Quicklook RadCalNet Output Version

RVUS, Tile 2 13 December 2018 64.0◦ 0.8◦ Figure 8 2.04
GONA, Tile 2 4 February 2019 35.3◦ 3.9◦ Figure 9 2.02
RVUS, Tile 3 28 June 2019 19.0◦ 3.4◦ Figure 10 2.04

As the TOA reflectance data from RadCalNet and the DESIS TOA radiance data are not directly
comparable, the following processing steps are carried out.

The DESIS dataset is processed up to L1B using the standard processing scheme, so
that it is available with a spectral resolution of ∼2.5 nm and in TOA radiances in units of
(mW·cm−2·sr−1·µm−1). By using the geocoded shape file provided by RadCalNet, and linking this to
the L1B geometry, the mean radiance LTOA,DESIS within this area is derived.

Next, the RadCalNet dataset closest in time to the DESIS acquisition is selected.
Then, the RadCalNet TOA reflectance ρTOA and related uncertainties are converted to TOA radiance
using the following equation:

LTOA,RadCalNet =
ρTOA,RadCalNet cos(SZA) E0

π d2 (2)

with d being the Earth–sun distance in astronomical units, and E0 being the solar spectral irradiance
model from Thuillier [111], endorsed by and available at CEOS IVOS [112], and SZA is the solar zenith
angle at the time of acquisition. Finally, the LTOA,DESIS is resampled to the coarser spectral resolution
of LTOA,RadCalNet using the nominal center wavelengths, and converted to the proper radiance units.

Figure 8. RVUS, 13 December 2018, L2A CIR image, non-linear stretch; coordinates given in WGS-84,
UTM Zone 11 N. RadCalNet location as red polygon.
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Figure 9. GONA, 4 February 2019, L2A CIR image, non-linear stretch; coordinates given in WGS-84,
UTM Zone 33 S. Arrow pointing towards the RadCalNet location (red dot).

Figure 10. RVUS, 28 June 2019, L2A CIR image, non-linear stretch; coordinates given in WGS-84,
UTM Zone 11 N. RadCalNet location as red polygon.

In the following plots, the mean TOA radiance values from RadCalNet and DESIS are shown for

the three sites and three dates (Figures 11–13). In addition, the ratio LTOA,DESIS
LTOA,RadCalNet

is shown in Figure 14.
DESIS shows good overall agreement to all three RadCalNet measurements, as it lies within

10 %except for atmospheric absorption features (Figure 14). This good agreement is even more
prominent when considering the uncertainty ranges provided by RadCalNet, as depicted in
Figures 11–13. To put this level of agreement into perspective, the agreement among RadCalNet,
Landsat-8 and Sentinel-2 A/B is reported to be within 5 % for these sites (see [113]). For the remaining
differences between RadCalNet and DESIS, up to ∼525 nm, the differences are partially due to noise.
From ∼525 nm to ∼650 nm, the results are excellent, which is also due to the fact that this wavelength
region has a high SNR and minimal atmospheric features. Beyond these wavelengths, the results are
likely contaminated by uncertainties in water vapor and atmospheric features, even more so as small
wavelength calibration errors may also amplify the atmospheric differences. Finally, for wavelengths
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above ∼800 nm, the Etalon effect of the CMOS sensor also has an influence. In addition, discrepancies
might also result from other sources including the spectral resampling steps, viewing angle and other
BRDF effects, as well as slight differences within the E0 model and the actual solar irradiance. It is
worth pointing out that currently the uncertainty budget for DESIS is a work in progress; when
available, the radiometric uncertainty estimates will be made available at [90].

When analyzing site-specific and temporal dependencies, no clear trend can be seen. Both RVUS
results are highly consistent (Figures 11 and 13), while having a time difference of approximately
six months. In addition, GONA results are consistent to RVUS, but show larger difference within
atmospheric absorption features, especially the 950 nm feature. This might be due to inaccuracies in the
RadCalNet atmospheric measurements and/or upscaling from BOA to TOA, and was communicated
to RadCalNet. Since the spectral shape of the differences between DESIS and RadCalNet are consistent
over approximately six months, and as the overall magnitude of these differences is also highly similar
in relation to the RadCalNet uncertainty budget, it can be concluded that the DESIS radiometric
calibration was stable over this period of time. In this context, it is also worth noting that GONA on
4 February 2019 and especially RVUS on 13 December 2018 have low overall radiance levels due to
large SZA (Table 4), but this does not significantly affect the level of agreement.

Figure 11. Comparison of RadCalNet TOA-L to DESIS mean TOA-L for RadCalNet location, RVUS,
13 December 2018, resampled to RadCalNet spectral resolution.

Figure 12. Comparison of RadCalNet TOA-L to DESIS mean TOA-L for RadCalNet location, GONA,
4 February 2019, resampled to RadCalNet spectral resolution.
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Figure 13. Comparison of RadCalNet TOA-L to DESIS mean TOA-L for RadCalNet location, RVUS,
28 June 2019, resampled to RadCalNet spectral resolution.

Figure 14. Ratio of mean DESIS TOA-L and corresponding RadCalNet data for all 3 sites, at RadCalNet
spectral resolution.

4.2.2. Top-of-Atmosphere Validation against other Missions

Since the number of coincident ground truth datasets were limited, and to have independent
checks of radiometric accuracy, DESIS was also compared to other satellite sensors in addition to
comparing against RadCalNet. Cross-calibration with well-calibrated sensors is a common technique
used for radiometric calibration and validation. Landsat-8 Operational Land Imager (OLI) and
Sentinel-2 MultiSpectral Instrument (MSI) (both Sentinel-2A and Sentinel-2B) were used to perform
the cross-calibration for DESIS [114,115]. Although these satellites acquire multispectral data rather
than hyperspectral data, coincident comparisons to other sensors with similar viewing geometries can
be made by integrating DESIS hyperspectral bands to match bandpasses and by using scenes with
slowly varying reflectance spectra. Landsat-8 data have 30-m GSD and five spectral bands within the
DESIS range, while Sentinel-2 has four 10-m bands, four 20-m bands, and one 60-m band within the
DESIS spectral range. This comparison was performed using the DESIS L1B 2.55 nm full resolution
hyperspectral data. The USGS EarthExplorer archive was used to identify near simultaneous nadir
acquisitions over pseudo-invariant sites between DESIS and Landsat-8 or Sentinel-2. Bright, highly
reflective scenes were used, which minimized the impact of the atmosphere on TOA measurements.
Pseudo-invariant sites were selected since they change slowly and are often approximately Lambertian.
In most cases, acquisitions occurred within one hour of each other. Small sensor zenith angles
(near nadir) were preferentially selected when possible to reduce atmospheric and BRDF differences
between datasets. Table 5 lists the acquisitions used for comparison, including site and acquisition
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parameters. The Barreal Blanco, Argentina DESIS acquisition, shown in bold, had both near-coincident
Landsat-8 and Sentinel-2 data on the same day.

To reduce the differences associated with solar zenith angle, comparisons were made using TOA
reflectance. Sentinel-2 L1C data was provided in TOA reflectance. DESIS L1B and Landsat-8 L1TP
TOA radiance were converted to reflectance using the equation:

ρTOA =
π LTOA d2

cos(SZA) E0
(3)

where the variables are as described above in Section 4.2.1.
DESIS data were band integrated to match the spectral resolution of the Landsat-8 and Sentinel-2

data. The multispectral sensor spectral responses were first interpolated to match the DESIS 2.55 nm
hyperspectral wavelengths. Then, integrated reflectance was calculated for each multispectral band
using the following equation:

ρband =

∫
ρ(λ) RSRband(λ) dλ∫

RSRband(λ) dλ
(4)

where ρ(λ) is the DESIS hyperspectral TOA reflectance, RSRband(λ) is one band of a sensor spectral
response interpolated to match the DESIS wavelengths, and ρband is the band integrated TOA
reflectance value. Comparisons were made for all images using a 210-m × 210-m reference area
around the defined latitude/longitude of the pseudo-invariant sites. All reference areas were visually
identified in the satellite imagery, and pixels within the area were averaged to produce a mean
reflectance value per spectral band. In all but one case, the TOA reflectance difference between DESIS
and the comparison sensor was less than ±5%. In the remaining case, Libya 4 on 4 November 2018,
DESIS TOA reflectance was 6% different from the Sentinel-2A 443-nm band. However, this acquisition
had the largest DESIS sensor zenith angle, which could impact TOA measurements, especially in the
blue end of the spectral range. Figure 15 summarizes the differences from Landsat-8 and Sentinel-2 for
all sites.

Table 5. Near-coincident DESIS and Landsat-8 or Sentinel-2 acquisition information.

Site Date Lat/Lon (◦) Sensor

Time Zenith Angle (◦)

Difference Sensor Solar

(min) DESIS L8/S2 DESIS L8/S2

Libya 2 8 December 2018 25.05, 20.48 L8 64 14.2 4.9 48.1 51.5
White Sands 10 October 2018 32.92, −106.35 L8 58 8.3 0.5 40.5 43.6
Barreal Blanco 12 March 2019 −31.86, −69.45 L8 45 1.0 6.3 35.5 43.1
Gobabeb 4 February 2019 −23.6, 15.12 S2B 17 3.9 4.9 35.3 28.3
Gobi Desert 11 February 2019 40.13, 94.34 S2A 18 10.4 7.4 56.5 57.3
Libya 4 4 November 2018 28.55, 23.39 S2A 20 26.2 5.4 49.8 46.2
Libya 4 3 January 2019 28.55, 23.39 S2A 28 3.4 5.7 58.1 54.8
Baotou 13 February 2019 40.85, 109.63 S2A 25 7.0 7.5 59.8 57.3
Atacama, Chile 10 March 2019 −22.49, −69.11 S2A 37 3.3 6.1 27.6 33.8
Barreal Blanco 12 March 2019 −32.86, −69.45 S2B 36 1.0 9.3 35.5 41.1
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Figure 15. Differences (%) between DESIS and Landsat-8 (top) and Sentinel-2 (bottom) TOA reflectance
for all sites.

Several of the Landsat-8 and Sentinel-2 band center wavelengths are very similar (Coastal aerosol
∼443 nm, Blue ∼482 nm, Green ∼562 nm, Red ∼655 nm and NIR ∼865 nm). For these bands,
the cross-calibration differences (%) from DESIS for both sensors were combined (Table 6). The mean
differences between DESIS and the comparison sensors were all < 1%, showing very little bias in the
radiometric accuracy, and, as expected, the largest variation was seen in the lower wavelengths.

Table 6. Cross-calibration combined difference statistics (%).

Statistic Coastal Aerosol Blue Green Red NIR
(∼443 nm) (∼482 nm) (∼562 nm) (∼655 nm) (∼865 nm)

Difference (%) 0.50 0.54 −0.08 −0.04 −0.31
Standard Deviation 2.77 2.13 1.86 1.92 1.76

4.2.3. Signal-to-Noise Ratio

A Discrete Cosine Transform (DCT) technique was used to estimate the SNR of unbinned 2.55 nm
spectral sampling DESIS L1A in-flight imagery. Photon Transfer techniques are typically used preflight
to measure SNR over the entire dynamic range [116]. Directly using inflight data is usually problematic
since the generally unknown scene variation must be accounted for. Using DCTs or other similar compact
transforms allows the separation of low frequency scene variations from the white read and photon
noise [117]. Since DCTs are compact transforms, they require only a few low order coefficients to describe
scene variations [118] and the higher order DCT coefficients are more likely to be noise and can be used to
relate noise in the frequency domain to noise in the time domain. L1A imagery was analyzed since it is
most directly correlated to sensor read and photon noise. To avoid the fixed pattern noise within the image
product, the technique performs 1-D DCTs along individual columns. A running 1-D DCT using 16-point
segments is computed in the along-track columns. The means of each segment are estimated and binned
and the highest order DCT coefficient (e.g., 16th) is assigned to the bin. The variance of the binned highest
order DCT coefficients is then estimated after outliers identified by Chauvenet’s criterion [119] and removed.
The resulting mean and variance of each bin are used to generate a mean–variance plot. Early assessments
have utilized relatively uniform scenes (pseudo-invariant sites and water), and avoid any defect pixels.
To improve the ability to span the full dynamic range in these early, relatively homogeneous scenes,
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analysis is performed in the DN space rather than in radiance. An example mean–variance plot is shown
in Figure 16 for part of an image of the Sudan pseudo-invariant site taken on 11 April 2019. The resulting
plot was in excellent agreement with the ground-based DESIS measurements [120]. These ground-based
measurement’s mean–variance plots predict SNRs>200 for a MODTRAN calculated TOA spectral radiance
with a Mid-latitude Summer (MLS) atmosphere, 30% albedo, 45 degree solar elevation, rural aerosol and
23 km visibility.

Figure 16. Mean–variance plot derived from a portion of the Sudan image acquired on 11 April 2019,
showing agreement with ground-based measurements..

4.3. Spectral Calibration and Properties

Spectral characterization of the instrument is essential, especially when the measurement data
are linked to the atmospheric transmission spectra, as in L2A processing. Inaccuracies of tenths of
nanometers in the spectral response can lead to strong distortions in the derived reflection spectra,
especially in the region of atmospheric absorption bands.

Spectral calibration of the DESIS instrument was performed in the laboratory and provided the
baseline for spectral referencing of the DESIS data. Through vicarious calibration, a minor update of the
spectral referencing was performed with respect to the pre-flight calibration. In addition, the analysis
of the OBCA spectral calibration data shows that the spectral stability of the instrument is better than
0.2 nm (RMS) over the whole spectral range of the instrument.

Together with the spectral stability, two other effects severely influence the spectral response of
DESIS and shall be corrected during data processing: the rolling shutter effect and the spectral smile
effect. The next two sections present the corrections employed and their results.

4.3.1. Rolling Shutter Correction

To correct the drawbacks of the use of the rolling shutter acquisition mode, an interpolation
on the along-track direction is performed (see Section 3.1). The effects of the correction at image
level can be seen in Figure 17. Figure 17a shows a DESIS L1B intermediate product that has been
radiometrically corrected and Figure 17b shows the same product after the rolling shutter correction.
When analyzing the borders between surfaces, the post-rolling shutter corrected image presents clearer
or sharper transitions. This is especially noticeable in the defined Region A, where a bright blue
line of pixels appears before applying the correction. For the comparison of spectral profiles before
and after correction, Region B encloses an area containing clear water and soil pixels, along with a
bordering pixel that delimits both regions. Figure 18 shows the corresponding spectra before and after
rolling shutter correction. In this specific case, the border pixel shows a clearer soil spectrum after the
reconstruction, similar to the spectra in Figure 18b.
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A 

B 

(a) Before rolling shutter correction (b) After rolling shutter correction

Figure 17. Intermediate DESIS L1B product before (a) and after (b) rolling shutter correction. Region
A presents a bright blue line of pixels in the transition between different surfaces before applying the
correction. The line disappears in (b) when the rolling shutter correction is applied. Region B encloses
an area containing clear water and soil pixels, along with a bordering pixel that delimits both regions.
The effect of the rolling shutter correction on the spectral profiles of Region B pixels is shown in Figure 18.
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Figure 18. Intermediate DESIS L1B product spectra from the Region B defined in Figure 17. The effect
of the correction on homogeneous pixels is negligible, as shown in (a,b). In (c), the effect of the rolling
shutter correction is more visible, because for some bands the instrument captured a different surface.

4.3.2. Spectral Smile Correction and Validation

Taking advantage of the narrow and continuous spectral sampling of imaging spectrometers,
the center wavelengths’ positions can be vicariously validated and, if required, also accurately
re-calibrated based on narrow atmospheric absorption features (see, e.g., [121,122]). According to a
sensitivity analysis by Guanter et al. [121], the typical accuracy of such approaches is about ±0.2 nm,
and therefore useful in context of DESIS’ spectral sampling of ∼2.5 nm.

Hence, for the validation of DESIS data, the following methodology was developed. Using the
MODTRAN radiative transfer code ([103]), the typical radiance spectrum in the range of the the Oxygen
A feature between 741 nm and 788 nm is calculated with a 0.1 nm spectral resolution. Within this
wavelength range, the influence of aerosols, water vapor and other atmospheric constituents is
relatively small and can be neglected. Next, this fine resolution spectrum is spectrally resampled
to the DESIS spectral resolution using the nominal bandwise FWHM information. For the assumed
center wavelengths, a total of 80 center wavelength positions are used relating to shifts within ±2.0 nm
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around the nominal band centers, in steps of 0.05 nm. Then, the bandwise column means of L1B
Earth data-takes were calculated, resulting in a “Detector Map” (DM), which represents the mean
radiance that each detector element received during the data-take ([123]). For the bands close to and
within the Oxygen A absorption band, the 80 normalized MODTRAN-simulated spectra are matched
to the normalized DESIS spectra. The best match between the normalized radiance spectra can then be
related to a center wavelength.

For the validation of the DESIS spectral calibration, data from different calibrations and processing
steps are analyzed. Within Table 7, the results of this analysis are shown for the Gobabeb scene from
4 February 2019, which was found to be representative. In general, the laboratory-based spectral
calibration already results in an average spectral shift of ∼0.5 nm for this wavelength range, which
can be further improved when applying the spectral smile correction to ∼0.4 nm. Using the updated
vicarious in-orbit calibration, these shifts are significantly reduced to ∼0.2 nm for both processing levels.

Table 7. Overview: Spectral in-orbit validation using the Oxygen A band absorption. Shifts in [nm]
calculated as average over all cross-track elements relative to the nominal band wavelengths for the
Gobabeb scene DT2019020405. “Lab. cal” refers to the pre-launch laboratory calibration, “Vic. cal.” to
the vicarious in-orbit calibration.

Band
Lab. cal. Vic. cal.

No Smile corr. Smile corr. No Smile corr. Smile corr.

141 (∼760 nm) −0.52 −0.46 0.19 0.26
143 (∼765 nm) −0.52 −0.46 −0.09 −0.02
146 (∼773 nm) −0.53 −0.45 −0.37 −0.29

While the improvement of the post-launch vicarious calibration is clear, the effect of the smile
correction procedure is needs further analysis. Assuming a perfectly smile-free system, the center
wavelengths position should be identical for all cross-track pixels. In the case of spectral smile,
each cross-track element senses a slightly different wavelength position, and also with a slightly
different spectral response function (SRF). Thus, the atmospheric absorption feature is resolved
differently for different cross-track positions and is used in a separate matching procedure for each
cross-track element. In Table 8, the wavelength calibration is given for different cross-track elements
across the FOV for the standard DESIS product (using the vicarious calibration and smile-correction
applied). In general, the correction of spectral smile further improves the spectral calibration,
but, as can be seen for the cross-track elements towards the edge of the detector, there are also
bands and cross-track positions where the spectral smile correction is increasing the calibration errors.
Nevertheless, these differences of standard DESIS products compared to the validation results are
always within ∼0.9 nm. Keeping in mind the DESIS spectral resolution of ∼2.5 nm and the typical
accuracy of this approach, this equates to a maximum error of 1/3–1/2 of a spectral pixel. In addition,
for the standard 10 nm binning products, these spectral shifts are not relevant.

When analyzing multiple scenes, the overall consistency in the wavelength calibration of the
smile-corrected products is ∼0.55 nm, calculated as the standard deviation of the wavelength
differences of single detector elements compared to their nominal center wavelengths. The standard
deviation over the various cross-track elements is similar, indicating that the magnitude and shape of
the spectral smile are constant and can be corrected.

For illustration, Figure 19 depicts the normalized radiance spectra over a homogeneous scene for
cross-track positions 20, 512 and 1004. After applying the smile correction (Figure 20), the feature is
more consistently resolved, indicating that the correction mitigates the spectral smile effect. However,
as described before, for some bands and cross-track positions the smile correction is only accurate
within 1/3 of a spectral pixel.
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Table 8. Spectral smile in-orbit validation. Center wavelengths given in [nm]; “Nominal” refers to the
in-orbit calibration and “Validation” to the results derived for the Gobabeb scene DT2019020405 with
smile correction, but no destriping.

Band
Cross-Track Element

10 256 512 768 1014

141 Nominal 761.31 761.13 760.63 760.46 759.81
Validation 760.51 760.41 760.76 760.46 760.11

143 Nominal 765.81 765.57 765.32 765.13 765.05
Validation 765.45 765.35 765.70 765.40 765.04

146 Nominal 773.45 773.18 772.83 772.53 771.90
Validation 773.18 773.08 773.43 773.13 772.78

Figure 19. Example of the cross-track derivation of the Oxygen A absorption feature before smile correction.

Figure 20. Example of the cross-track derivation of the Oxygen A absorption feature after smile correction.
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4.4. Geometric Properties

In the following sections, the actual spatial resolution in terms of the Modular Transfer Function
(MTF) is examined and compared with the laboratory measurements, and the geolocational accuracy is
derived based on the evaluation of a series of images collected during the commissioning phase.
Correctly georeferenced and registered images are needed for multi-sensor and multi-temporal
image fusion, overlaying images on existing datasets or maps, change detection, map updating,
and integration into geographic information systems.

4.4.1. Modulation Transfer Function MTF

The spatial resolution of the DESIS Level 1B data product in terms of Modulation Transfer Function
at Nyquist (MTF@Nyquist) and Edge Slope (ES) was estimated for 10.2 nm spectrally binned data in
the blue, green, red and NIR bands. DESIS spatial resolution is specified in term the MTF@Nyquist
with a goal to exceed 0.2. The Landsat community, on the other hand, uses Edge Slope (ES), which is
defined as the average edge slope between the 40% and 60% points of a normalized edge response [124],
and, as a reference, is required to exceed 0.026 m−1. Most bridges run north–south or east–west and
are often used as pulse targets to estimate the spatial resolution for moderate resolution satellite
imagers such as Landsat [125]. Because the ISS has a 53-degree inclination, cardinal oriented targets
cannot be used to estimate along-track and cross-track spatial resolution parameters. Instead, DESIS
cross-track spatial resolution was estimated using a set of large agricultural fields orientated in such
a way as to create near ideal cross-track edge responses. A tilted edge response technique [126] was
applied to these responses to determine MTF@Nyquist and ES. A benefit of this technique is that it
generates a sampled edge response while minimizing aliasing. For this assessment, an automated tilted
edge response algorithm was employed that: identifies potential edges within a scene where image
gradients are maximized; screens identified edges for length, orientation, and uniformity; fits resulting
data using a functional form which is the sum of an error function and fifth order polynomial; and then
calculates MTF@Nyquist and ES. In this functional form, the error function portion of the fit models
the majority of the edge response variation and the polynomial portion fits the small deviations from
an ideal error function. Example mean results for 30 found edges are shown in Figures 21 and 22.
The cross track MTF@Nyquist exceeds 0.3 and the DESIS goal of 0.2 and is higher than the minimum
ES set for Landsat systems. Future work will evaluate spatial resolution in the along-track direction,
which we expect will be slightly lower than the cross-track direction.

Figure 21. DESIS in-flight MTF@Nyquist in the cross-track direction. Values plotted are means and
standard errors of 30 in-scene edges.
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Figure 22. DESIS in flight Edge Slope in the cross-track direction. Values plotted are means and
standard errors of 30 in-scene edges.

4.4.2. Geolocation Accuracy

As mentioned in Section 3.2, GCPs are generated for each DESIS scene using image matching
employing reference images in order to improve the parameters of the geometric sensor model. If this
on-the-fly method fails, parameters derived from statistical evaluation of a series of previous acquisitions
are used. In this case, thermal influences on the MUSES/DESIS system and uncertainties in the attitude and
position measurements result in worse geometric accuracy. For the assessment of the geolocation accuracy
and boresight angle determination, 177 scenes were analyzed. These scenes were acquired globally with
off-nadir viewing angles up to 26◦ and solar zenith angles up to 73◦. On average, 210 GCP per scene were
found for the improvement of the sensor model parameters and 968 CP per scene for accuracy assessment.
The achieved linear Root Mean Square Error with respect to the reference scenes based on the evaluation
of individual scenes is given in Table 9 and is below one pixel size (0.7 pixel).

Table 9. Linear root mean square error with respect to reference scenes.

RMSEX (Easting) RMSEY (Northing)

21.0 ± 5.9 m 21.4 ± 6.0 m

The assessment of absolute geolocation accuracy requires high quality GCPs distributed
throughout the world and scenes acquired under different conditions. Such an investigation still
needs to be carried out, but considering the geolocation accuracy of the reference data (see Section 3.2),
an upper limit of the absolute linear RMSE value of about 28 m can be estimated. Relying only on the
calibrated sensor parameters and on-board measurements, the geolocation precision is about 298 m
across track and about 496 m along track. The differences in precision are probably due to the fact that
along track the rotating mirror (POI) of DESIS shows a certain inaccuracy. Figure 23 demonstrates the
stability of the estimated boresight angles over a time range from 11 September 2018 to 5 March 2019.
The three rotation angles (X, around along track; Y, around across track; and Z, around optical axis)
from the sensor coordinate frame to the body frame show no trends during this six-month period
with the mean values (rotmean

x , rotmean
y , rotmean

z ) = (0.0692◦, −0.1753◦, 0.2323◦) reflecting the boresight
calibration and the standard deviation (rotstdv

x , rotstdv
y , rotstdv

z ) = (0.0427◦, 0.0711◦, 0.0981◦) reflecting
the uncertainty if no matching can be performed.



Sensors 2019, 19, 4471 26 of 44

Figure 23. Estimated boresight angles of the DESIS sensor with respect to the body coordinate frame.
The three angles as well as the trend lines are plotted against the acquisition time of the data.

4.5. Surface Reflectance and Atmospheric Properties

The accuracy of the BOA surface reflectance depends on the accuracy of the instrument calibration,
the input parameters (such as radiative transfer functions, ozone column, and DEM) and the
determination, during the atmospheric correction process, of the atmosphere parameters (mainly
WV and AOT).

In the next sections, we present strategy, datasets and results for surface reflectance validation.
In a first step, the atmospheric parameters calculated by the processor, and later used for the surface
reflectance determination, are validated against measurements of the atmosphere from ground.
Subsequently, BOA surface reflectance values are validated against in situ measurements.

4.5.1. Aerosol Optical Thickness and Water Vapor

The validation of these products is done using the AErosol RObotic NETwork (AERONET)
global dataset of sun-photometers [127], level 1.5. It is performed according to several overpass
(atmosphere-based) criteria that foresee the same atmospheric conditions in both datasets:

• Space: The DESIS measurement is extracted from a 9 km × 9 km region of interest (here after
called ROI9) around the AERONET coordinates.

• Time: The AERONET measurement is interpolated to the overpass time of DESIS through the
AERONET station coordinates.

• Wavelength: The AERONET AOT data are interpolated to 550 nm wavelength.

Once the dataset fulfills the overpass criteria, the AOT and WV (calculated per pixel) are calculated
using the following pixel selection dependent on atmospheric parameters:

• AOT is extracted from the DDV pixels detected in the scene.
• WV is extracted from clear land pixels.

Scenes having fewer than 5% of the pixels inside the ROI9 around the AERONET station fulfilling
the mentioned criteria for all parameters were not included in this study.

From all the scenes fulfilling the atmosphere-based overpass conditions, 11 contain more than
5% DDV pixels and 36 have more than 5% clear land pixels in the ROI9. Those has been used for the
validation study of the AOT and WV, respectively. Calculating the RMSE of the absolute difference of
the AOT and WV with respect to AERONET, we get an RMSE for the aerosol optical thickness (AOT)
of 0.17% and 11% for the water vapor column (WV).

The validation results of the WV retrieval algorithm, using the water absorption region of 820
nm, are consistent with the APDA algorithm validation performed by Richter and Schlapfer [128],
who estimated an RMSE of 10% for Sentinel-2 data, using the 940 nm bands.
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The validation results for the AOT show a RMSE larger than the typical one of 0.08 reported
by Obregón et al. [129] when comparing Sentinel-2 with AERONET stations. One possibility could be
a difference of the spectral response functions used for the AOT retrieval (red and NIR). Research on
Sentinel-2 data by Obregón et al. [129] showed a decrease of the AOT RMSE compared to AERONET
values from 0.14 to 0.08, after an update of the spectral response functions in the blue.

4.5.2. Bottom-of-Atmosphere Reflectance

To validate the Bottom-Of-Atmosphere (BOA) reflectance, we selected spectra from RadcalNet
sites, on three different RadcalNet sites: La Crau (France), Railroad Valley Playa (USA), and Gobabeb
(Namibia). Baotou RadcalNet site was removed from this study due to a limited site extension (<48 m).
For an accurate comparison, the data-takes of DESIS and any other measurement should fulfill the
following “overpass” criteria:

1. Time: Spectra comparison is only performed between data takes acquired within the same day.
For RadcalNet, the TOA spectra are the interpolation result between two measurements spaced
<30 min.

2. Space: Different extensions around RadCalNet measurements points are considered depending
on the site surface reflectance homogeneity specifications (see Table 10). The extension considered
in this study is specified in a separate column in the table.

3. Wavelength: The spectra of all the sensors are convolved to the SRF of the sensor per band with
larger FWHM (in this case, RadcalNet) (see Equation (5)).

ρDESIS,RCN =

∫
RCNλ

ρDESIS · SRFRCN,λ∫
RCNλ

SRFRCN,λ
(5)

Table 10. RadcalNET sites used for BOA surface reflectance study with their corresponding coordinates,
extension and surface reflectance variability across site [130–132].

RadcalNet Site Coordinates (o) Extension ρ Site Variability

Name lon lat (km × km) (%)

Railroad Valley (RVUS) 38.497 −115.690 1.0 1.5
Gobabeb (GONA) 15.120 −23.600 0.5 3

In addition to the overpass criteria listed above, we included in this study those DESIS scenes
acquired under good atmospheric conditions. Scenes with clouds and visible cirrus were excluded
from the validation dataset. This is the case for the acquired DESIS scenes over La Crau RadcalNet site.
Therefore, only scenes acquired over two RadcalNet sites were evaluated (see Table 10). These two sites
are typically arid, without any presence of dark dense vegetation. For these scenes, the atmospheric
correction algorithms cannot estimate an accurate value of the AOT and a default value corrected
by the DEM is used in such scenes. To validate the rest of the L2A processing, with the exception of
the influence of the AOT retrieval accuracy, we used the measured AOT value at the RadcalNet site
as an input to the atmospheric correction of DESIS data for validation purposes only. Note that this
possibility is not available for the standard processing of L2A DESIS products.

The corresponding ozone column for each of the DESIS scenes was extracted off-line from the
MODIS database MOD08_E3 (version 61) [133] and included in this validation. This option is available
to all users.

Note that the DESIS BOA reflectance compared in this study does not include the accounting of
Bidirectional Reflectance Distribution function at the surface or RadcalNet data.

The BOA surface reflectance from DESIS and RadcalNet site Gobabeb and Railroad Valley are
shown in Figures 24–26, respectively.
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Figure 24. DESIS (black crosses) and RadCalNet (green diamonds) BOA surface reflectances at Gobabeb
site (4 February 2019). DESIS spectrum at 2.5 nm has been convolved with RadCalNet spectral response:
(top) BOA surface reflectance; (center) absolute difference of surface reflectance; and (bottom) Relative
difference (%) of surface reflectance.

Figure 25. DESIS (black crosses) and RadCalNet (green diamonds) BOA surface reflectances at 10 nm
spectral resolution for Railroad Valley Playa site (13 December 2018): (top) BOA surface reflectance;
(center) absolute difference of surface reflectance; and (bottom) Relative difference (%) of surface
reflectance.
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Figure 26. DESIS (black crosses) and RadCalNet (green diamonds) BOA surface reflectances at 10 nm
spectral resolution for Railroad Valley Playa site (28 June 2019). For each of the set of plots: (top) BOA
surface reflectance; (center) absolute difference of surface reflectance; and (bottom) Relative difference
(%) of surface reflectance.

The DESIS BOA surface reflectance is consistent with RadCalNet measurements with 10% relative
difference for two different sites and for all wavelengths, except for the first bands (<420 nm) that show
a difference up to 20%. This relative difference agrees with the RadcalNet site variability (see Table 10),
since surface reflectance difference is calculated per pixel subtracting the RadCalNet reference spectrum
for the full site extension.

For this type of scenes (arid sites), no DDV pixels are available to determine the aerosol content,
so the atmospheric correction is performed with an estimated value. This value is rather pessimistic
for RadcalNet sites, where very low aerosol content is present for those days flagged as good quality
data (green dots). Figure 27 shows the order of magnitude in the estimated BOA surface reflectance
for Gobabeb scene for two different values of the AOT. For this scene, the AOT measured in RadcalNet
site is AOTRCN = 0.06 (filled diamonds), while the value estimated for a default visibility of 23 km is of
∼0.3 (crosses). The larger difference (< 25%) in surface reflectance happens in the blue wavelengths
range (<480 nm), decreasing to <10% for green wavelengths. Less than a 3% relative difference is
expected at NIR wavelengths.



Sensors 2019, 19, 4471 30 of 44

Figure 27. DESIS absolute (top) and relative (bottom) difference in BOA surface reflectance with
RadCalNet reference data at Gobabeb site (4 February 2019).

5. Product Limitations

In the following section, we describe the few limitations of DESIS data which were detected
during the commissioning phase, and thus reflect the current data quality. Some of these issues may
be solved or mitigated in the future. Information for the improvement of the data products will be
published on the DLR web portal [90].

5.1. Image Artifacts and Dead Pixels

Within the DESIS ground segment, the assessment of defective detector elements is conducted
twice. Firstly, an interactive offline analysis is carried out as part of routine data quality control;
furthermore, an online assessment of every Earth data-take is conducted by the L1B processor,
and results are included in the metadata of every product. The results of the interactive analysis
carried out during the DESIS commissioning phase are detailed below.

Of the 240,640 active detector elements of the DESIS CMOS detector, only minor parts cannot
be used due to manufacturing defects, occurring in the first seven spectral bands on the edges of the
field-of-view, as listed in Table 11. Due to the nature of these defects, no recovery of a meaningful
measured signal (e.g., by extrapolation) is possible; thus, these pixels should no be used during
subsequent analysis.
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Table 11. Pixel defects on the DESIS chip (unbinned readout).

Manufacturing Defects

Band Cross-Track Elements Defect Type

1 1–280, 1008–1024

Manufacturing Defect

2 1–229, 1016–1024
3 1–150, 1021–1024
4 1–150
5 1–42
6 1–30
7 1–30

8 140

Dead Pixel

9 140
19 217
23 277, 887
24 103, 733
34 802, 803
50 728
53 99
54 99
57 37
69 836
70 836
220 619
221 619

Whenever a single detector element consistently generates a too low or a too high signal in relation
to its spatial neighboring pixels, the corresponding column in the image tile will appear darker or
brighter than the neighboring columns, i.e., the image is “striped” (see Section 3). To detect and mask
these detector elements surviving the de-striping process, procedures within the processing chain are
used. Within the L1B processor, the bandwise column means are calculated using the uncalibrated L1A
and the fully calibrated L1B data, and stored as “Detector Maps”. These DMs are arrays representing
the detector chip, having the dimension of cross-track-elements × spectral bands.

The analysis was carried out using DMs from 1090 L1A and 728 L1B Earth data-takes. For the
calibrated L1B datasets, no corrections for rolling shutter and spectral smile were applied, as these
processing steps incorporate information from spatial and/or spectral neighboring pixels, thus partially
masking the striping. Neglecting the mentioned bands having manufacturing defects (i.e., using
band 8 onward), an additional 17 pixels are showing permanent defects (10 more currently under
investigation), and are thus marked as “defective” and included in the dead pixel mask. All other
defects which were detected this way, or were identified during the vicarious calibration, could be
improved within the standard destriping procedure in the L1B processor (see Section 3.1).

Other typical image artefacts such as saturated pixels, cross-talk and missing data are rare and
currently not considered as a limitation.

5.2. Geolocation Accuracy

As mentioned in Section 4.4.2, the geometric accuracy of L1C and L2A products can be about
15 pixels with peak values of up to 30 pixels (1 km), if refinement of the sensor model parameters
by GCPs is not possible. Image matching will fail if the DESIS scene and the reference data are
too different (e.g., due to a large distance in acquisition time) or do not contain sufficient texture
information (e.g., rainforest areas, water areas, and snow covered areas). An increase in the instances
of successful image matching could be achieved by simultaneously considering multiple DESIS
scenes within a data take for image matching [134], rather than single scenes, and using a temporally
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up-to-date reference database, which could be retrieved from Sentinel-2 archives. Both concepts are
currently under consideration.

5.3. On-Board Radiometric Calibration

The intended use of the on-board calibrations consisting of LEDs for future updates of the
radiometric calibration tables will not be possible due to non-uniform illumination of the focal plane
array [120]. Therefore, future radiometric re-calibration will only be based on vicarious calibration and
cross-calibration activities.

5.4. Spectral Properties

As shown in Section 4.3.2, DESIS has an overall accurate and stable spectral calibration, but
indications for minor wavelengths shifts and uncorrected spectral smile remain. In addition, clocking
and ethaloning effects influence the bands above ∼800 nm (Section 3.1). Only for unbinned 2.5 nm
resolution data, these shortcomings might affect the data analysis. Therefore, advanced correction
techniques are under investigation. For binned 10 nm data, the aforementioned spectral distortions are
not relevant.

5.5. Radiometric Properties

Shortcomings in relative radiometric calibration (i.e., striping) were successfully mitigated with
the implemented striping correction (see Section 3.1). The absolute radiometric properties were
successfully validated at spectral resolutions of 10 nm and coarser (see Sections 4.2.1 and 4.2.2). At the
mentioned spectral resolutions, the radiometric properties above ∼650 nm are within ∼ 10%, but could
possibly be improved by an ethaloning correction and additional in-orbit calibrations. Regarding the
absolute radiometric properties of DESIS (Section 4.2.1), the validation for the full spectral resolution of
2.5 nm is currently limited by the availability of suitable reference data, as RadCalNet is only providing
data with 10 nm spectral resolution.

5.6. Masks

There are some limitations in the following L2A masks:

• Snow and clouds: Mis-classifications may result in snow pixels classified as clouds, due to a
rather similar spectra both classification types for the available wavelengths of the sensor.

• The clear land mask will contain all pixels not identified by any of the different masks algorithms
contained in the pre-classification routine. This is the case for DESIS concerning cirrus clouds. Some
clear land pixels might contain thin and medium cirrus, as DESIS does not have any band at ∼1.38 µm.
Only thick cirrus are likely to be included in the clouds mask (see lower left corner in Figure 4).

• The clouds over water mask will always be empty by default. Its values can only be filled when
an external water mask is provided. Future software release could include such external water
mask as input.

• Both haze masks might contain very bright water pixels.

For the best performance in the shadows determination, the usage of a DEM is required, in order
to prevent some topographic shadows from not being fully recognized.

Future development efforts will concentrate on solving these issues.

5.7. Rugged Terrain Atmospheric Correction with Noisy DEM

It has been observed that noisy DEM regions can introduce artifacts (e.g., shadows and BRDF)
into the final BOA surface reflection products. This is especially observed at very high zenith angles.
Currently, there is no strategy to address this problem, therefore it is recommended to order L2A
products without terrain correction for the analysis of known flat areas in combination with large sun
zenith angles.
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6. Data Fusion Experiment—An Outlook

Applications requiring high spatial resolution (e.g., for urban areas with fine structured information)
will have limited usability for spaceborne imaging spectrometers with a GSD of about 30 m. This problem
is typically addressed by resolution enhancement methods, which aim at increasing the spatial resolution
of imaging spectrometers while preserving valuable spectral information. One option for resolution
enhancement is fusing information from such images with a higher spatial resolution image containing
fewer spectral bands. Resolution enhancement of imaging spectroscopy data using a multispectral image
has recently gained more attention from researchers [135,136], driven by the large amount of planned
satellite spectrometer missions, as well as by the rising number of applications for this kind of data.
As soon as additional sensors are placed on the MUSES platform, multi-modal observations will become
possible, enabling sensor fusion approaches employing the same sun–target–sensor geometry, atmospheric
conditions, and object properties. In the following section, we demonstrate how the fusion of DESIS data
with Sentinel-2 data leads to added value products.

The limited spatial resolution of the DESIS image data (30 m GSD) leads to single image elements
that usually contain different targets on the ground. The resulting associated spectrum is then a
mixture of different spectra related to pure materials (also known as endmembers); this can be a
major hindrance for practical applications such as target detection, classification, and change detection,
where often the desired level of detail is finer than the sensor’s GSD.

To produce fused data with both high spatial and spectral resolution, DESIS information could
be enhanced using Sentinel-2 data, which features 12 spectral bands, four of which have a GSD of
10 m. This results in a resolution ratio of 1:3 with respect to the hyperspectral product, limiting spectral
distortions in the fused products [137]. Furthermore, Sentinel-2 products are freely available through
the Copernicus program, and are characterized by a high temporal resolution, allowing the retrieval
of multimodal images acquired on the same area within only a few days. Both DESIS and Sentinel-2
products (only bands at 10 m GSD) were converted beforehand to BOA reflectance and accurately
co-registered. As a preliminary result, an example is reported in Figure 28 for the fusion of a DESIS
and corresponding Sentinel-2 image subsets acquired in the area of La Crau (France), of size 100 × 100
and 300 × 300 pixels, respectively. The fusion algorithm of choice is Coupled Non-negative Matrix
Factorization (CNMF) unmixing. Both hyperspectral and multispectral data are decomposed assuming
that each spectrum can be expressed as a linear combination of the endmembers present in the scene,
yielding their relative fractional coverages (abundances) pixel-wise.

(a) DESIS subset, 30 m GSD (b) Sentinel 2 subset, 10 m GSD (c) Fusion results, 10 m GSD
Figure 28. Data fusion results: true color combinations.

As a high resolution hyperspectral dataset on the site of interest is not available, a quantitative
assessment of the fusion results is not easy. Both DESIS and Sentinel2 images can be simulated
from a high resolution hyperspectral dataset; nevertheless, this would oversimplify the problem
by ignoring coregistration errors, variations in atmospheric conditions, and distortions related to a
single sensors [138]. To quantify the spectral distortion of the fused product, we compare them to the
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original DESIS data in homogeneous areas, reported in Figure 29a. These are approximately located by
thresholding the variance in a local sliding window of size 3 × 3 in the red band of the multispectral
image, corresponding to the size of a DESIS image element. Pixels with high variance are considered
to be heavily mixed in the low resolution hyperspectral data and are not considered in the analysis.

Distortion is quantified through Spectral Angle (SA) [139] and reported in Figure 29b. Pixels in
homogeneous areas with associated low variance have low to no spectral distortion: the mean SA is
0.035 with a standard deviation of 0.027, and 97.5% of the pixels have a SA below 0.1, i.e., below typical
thresholds for practical material detection applications. On the other hand, spectra within mixed image
elements are different from their average spectrum in the original DESIS image. Such differences
are usually meaningful; for example, the spectral reconstruction for a pixel exhibiting high spectral
distortion is reported in Figure 30. At a spatial resolution of 30 m, the building in the image is
mixed with the surrounding vegetation, resulting in a spectrum which closely resembles the latter.
The multispectral pixel, on the other hand, resembles the typical ramp characterizing the spectra of
man-made structures, and this information is injected into the fusion process, resulting in a spectrum
exhibiting features typical of impervious surfaces.

(a) Homogeneous areas (red) (b) Spectral differences
Figure 29. Image elements with low variance in the subset of interest, assumed to belong to
homogeneous areas, reported in red (a). Spectral Angle between DESIS image upsampled to 10 m
(nearest neighbor) and fused product (b). Areas with associated higher distortion usually contain
mixed pixels, which exhibit different spectral features at different resolutions.

Figure 30. Subsets from DESIS (30 m), Sentinel-2 (10 m), and the fused product (10 m). Below are
reported the relative spectra for the center of the yellow squares in the image subsets. The Sentinel-2
spectrum, corresponding to a man-made object, shows a high reflectance in the red spectral range:
this is not observable in the larger DESIS pixel, dominated by vegetation. The fused product (10 m)
correctly synthesizes a full spectrum resembling the general behavior of the Sentinel-2 product.
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6.1. Target Detection

To quantify the enhanced spectral characterization of each image element, we report in Figure 31
a target detection application. A sample spectrum is selected from the same location for the solar
panels to the NW of the image subset for the hyperspectral and multispectral images. Subsequently,
pixels with a SA distance smaller than 0.02 rad are selected as belonging to the solar panels class.
The results show that Sentinel 2 has problems in detecting the class of interest solely based on spectral
similarity with such a low threshold, while this is not the case for the fused product. Quantitative
results in terms of overall accuracy and percentage of false alarms are reported in Table 12. Even though
in the fused products the false positives increase by a factor of 10, these are mostly located on the
borders of the panels which were not included in the ground truth.

(a) Solar panels locations (b) Detection (fused product) (c) Detection (Sentinel2)
Figure 31. Detection of solar panels by hard thresholding of spectral similarity of each image element
in the enhanced product (output of data fusion) and original multispectral dataset.

Table 12. Performance (%) for solar panels detection.

Product Overall Accuracy False Positives

Multispectral 34.39 0.01
Fused product 92.68 0.10

When applying data fusion algorithms as in the previous examples, the following aspects must be
taken into account. First, the coregistration between multispectral and hyperspectral images should be
as precise as possible. In the reported example, this has been manually refined from the georeferenced
products. Furthermore, noisy bands should be removed from the hyperspectral image before the
fusion process, in order to prevent the unmixing-based algorithm from selecting spurious endmembers:
these have been identified as bands [1–11,137–148,226–235] for the DESIS scene above; in general,
special care should be taken for any application involving spectral unmixing which uses the mentioned
bands. Finally, better results are to be expected when restricting the fusion to a DESIS image subset
rather than a full scene: keeping the complexity of the image low, in terms of the number of materials
contained, helps minimizing the spectral distortions in the fused product.

7. Conclusions

In May 2014, the German Aerospace Center (DLR) and the US company Teledyne Brown
Engineering, Inc. (TBE) agreed to install and operate the imaging spectrometer DESIS on board
of the International Space Station (ISS). The instrument, built by DLR, is the first of four possible
camera systems that can be hosted by the MUSES platform. In August 2018, the DESIS spectrometer
was integrated into MUSES, which marked the start of the commissioning phase. The DESIS on-orbit
functional tests were successfully passed and the DLR-built processing systems installed at DLR and
TBE are stably producing L1B, L1C and L2A products. Now, about five years since mission kick-off,
the operational phase has been entered and the distribution of the data to the scientific and commercial
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community has begun. In this article, the main outcomes of the commissioning phase are presented,
which are summarized as follows:

• Absolute radiometric calibration is well within 10% at the TOA radiance and TOA reflectance
level when validated against RadCalNet, Sentinel-2 and Landsat-8 .

• Spectral calibration after smile correction is typically better than 0.5 nm, and always within 1/3 of
a spectral pixel.

• SNR is greater than 200 in the green spectral region for a 30% albedo, 45 degree solar elevation,
MLS 23 km visibility, and rural aerosol TOA radiance.

• MTF@Nyquist (across track) is about 0.3–0.4.
• Geometric accuracy with respect to reference is 20 m (<1 pixel) linear RMSE in the case that GCPs

can be derived from image-to-image matching; otherwise, RMSE is 300–500 m.
• BOA reflectance is within <10% based on RadCalNet, Pinnacles, and Sentinel-2 comparisons.
• The current limitations in the use of the various DESIS data products herein are described, as well

as future work and improvements.

Despite the discussed limitations of the instrument, DESIS has several advantages compared
to other imaging spectrometers. The high spectral sampling of 2.55 nm with a SNR of about 200 is
currently unique and allows investigations of very narrow band features in the spectrum reflected
from a target on ground. The imaging spectrometer DESIS will enable new applications in addition to
the ones described in Section 2. The off-nadir capability of DESIS with ±15◦ along the track during a
data-take enables investigations of multiangular characteristics of objects on Earth, thus providing
additional target-specific information at high spectral resolution. Furthermore, the variable recording
times due to the non-polar or non-sun-synchronous orbit allow investigations, e.g., of dynamics of
solar-induced chlorophyll fluorescence and photosynthesis, which is subject to strong daily fluctuations.
Finally, as soon as additional sensors are placed on the MUSES platform, multi-modal observations
will become possible, enabling cross-calibration and sensor fusion approaches employing the same
sun-target-sensor geometry, atmospheric conditions and object properties.
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Abbreviations

Main abbreviations in this manuscript are given below:

AOT Aerosol Optical Thickness
BOA Bottom-Of-Atmosphere
BRDF Bi-directional Reflectance Distribution Function
CDOM Colored Dissolved Organic Matter
CP Control Points
CMOS Complementary metal-oxide-semiconductor
DC Dark Current
DCT Discrete Cosine Transform
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DM Detector Map
DN Digital Number
DDV Dark Dense Vegetation
DESIS DLR Earth Sensing Imaging Spectrometer
DLR German Aerospace Center
DEM Digital Elevation Model
DSM Digital Surface Model
EnMAP Environmental Mapping and Analysis Program
ES Edge Slope
GCP Ground Control Points
GSD Ground Sampling Distance
ISS International Space Station
MTF Modular Transfer Function
MUSES Multi-User-System for Earth Sensing
NIR Near Infrared
PICS CEOS Pseudo-Invariant Calibration Sites
RCN RadCalNet
ROI Region Of Interest
SA Spectral Angle
SNR Signal-to-Noise Ratio
SRF Spectral Response Function
SRTM Shuttle Radar Topography Mission
TBE Teledyne Brown Engineering
TOA Top-Of-Atmosphere
TSM Total Suspended Matter
VNIR Visible Near Infrared
WV Water Vapor
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